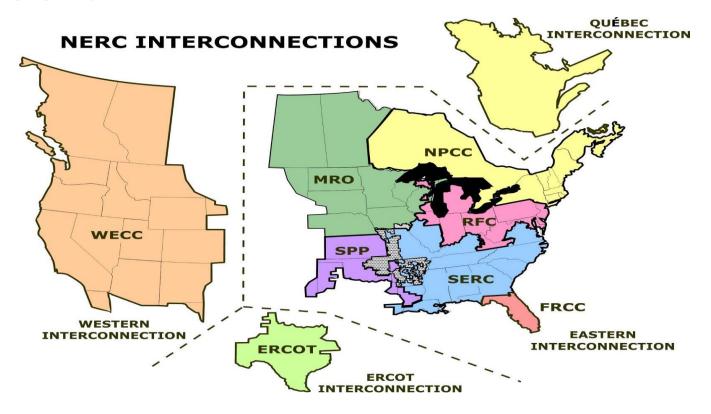
BUILDING A WORLD OF DIFFERENCE

SUBSTATION DESIGN

SENIOR DESIGN PROJECT

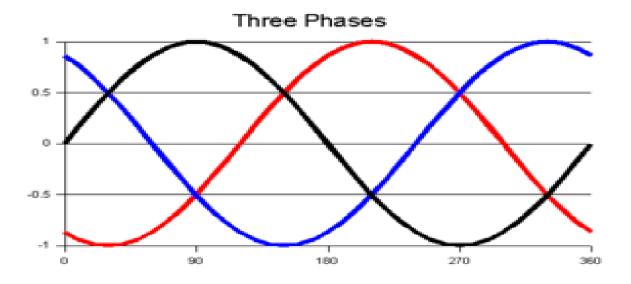
ABOUT ME

- Cole Beaulieu
- Graduated from ISU in May of 2017
- From Plymouth, MN
- Started at B&V's Bloomington office in June 2017


PROJECT SCOPE

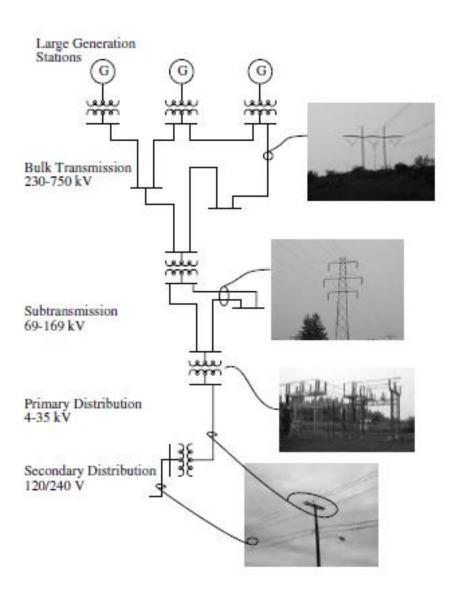
- Protection and Control Design one-line diagrams, three-line diagrams, AC & DC Schematics, panel arrangements, and station service power requirements.
- Engineering Management Services: budget, schedule, weekly status reports, project review meetings, final reports and presentation.

THE US GRID



- Florida Reliability Coordinating Council (FRCC)
- Midwest Reliability Organization (MRO)
- Northeast Power Coordinating Council (NPCC)
- Reliability First Corporation (RFC)

- SERC Reliability Corporation (SERC)
- Southwest Power Pool, RE (SPP)
- Texas Reliability Entity (TRE)
- Western Electricity Coordinating Council (WECC)


POWER DELIVERY

- Bulk power delivery is three-phase alternating current (AC)
- 60Hz in the U.S.
- Provides for a constant power delivery at all times
- Best for machines (generators and motors)

ELECTRICITY INFRASTRUCTURE

- Transmission Voltages (Bulk System, Long Distances)
 - 765-kV, 500-kV, 345-kV, 230-kV
- Sub-transmission Voltages 138-kV, 115-kV, 69-kV, 34.5-kV
- **Distribution Voltages** *Too many to list: 24.94-kV, 13.8-kV*
- **Residential** 120/240V, 208V

SUBSTATIONS

Outdoor Substation

Service Requirements:

(1) Transformer substations

Step-up substations, Primary grid substations, Secondary substations & Distribution substations

- (2) Switching substations
- (3) Converting substations

Construction features:

- (1) Indoor substations
- (2) Outdoor substations
- (3) Underground substations
- (4) Pole mounted substations

BUS CONFIGURATIONS

- Radial Bus
- Sectionalized Radial Bus
- Main & Transfer Bus
- Ring Bus
- Breaker & One-Half Bus
- Single Breaker Double Bus
- Double Breaker Double Bus

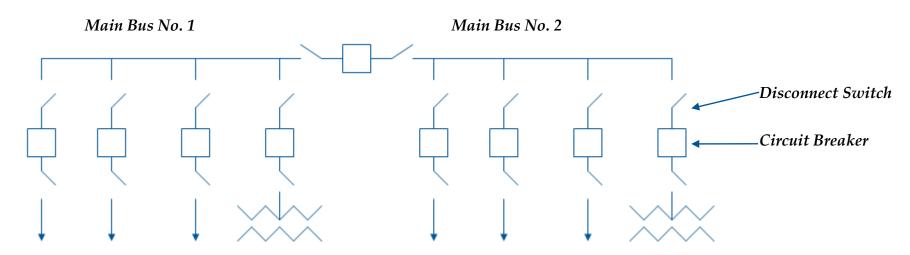
RADIAL BUS

Advantages

Simple operation & protective relaying, low initial cost, low maintenance, easy to expand

Disadvantages

System interrupted in case of repairs & faults, low reliability

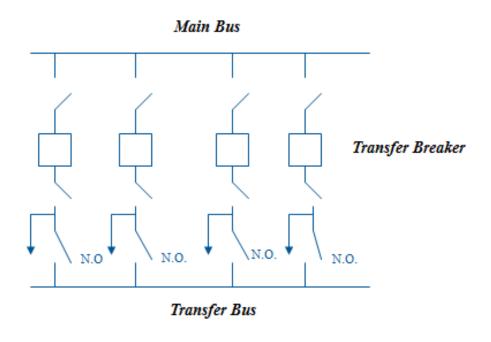

SECTIONALIZED RADIAL BUS

Advantages

Easy to expand, small land area required, increased reliability & flexibility over the radial bus

Disadvantages

Increased cost, complexity of operation & protective relaying over the radial bus

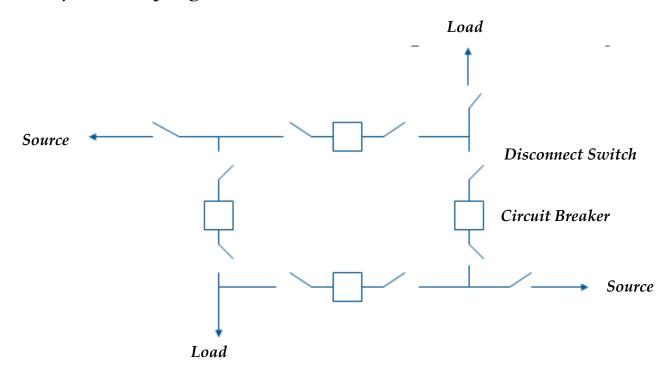

MAIN AND TRANSFER BUS

Advantages

Small land area, easy to expand, increased flexibility over radial bus

Disadvantages

Increased cost, complexity of operation & protective relaying over the radial bus, low reliability

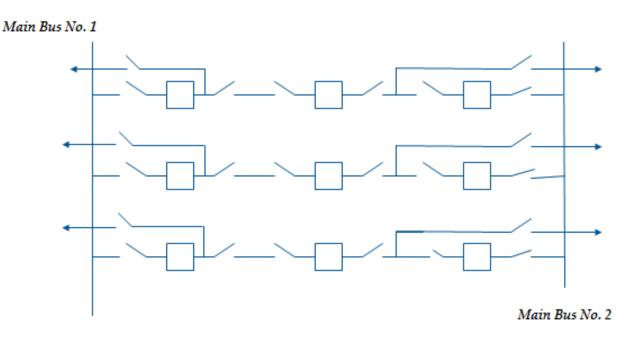

RING BUS

Advantages

Low cost, high reliability, flexible operation, flexible operation, removal of a circuit breaker will not affect outage

Disadvantages

Complex relaying and control

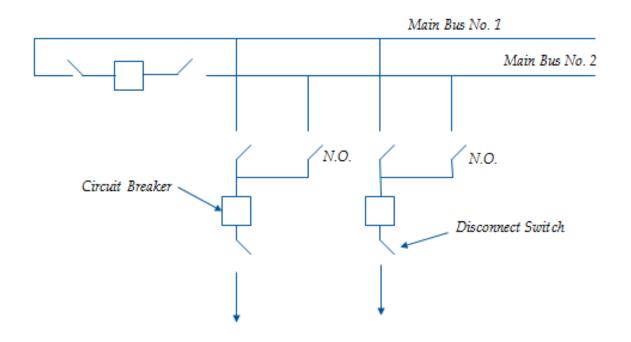

Breaker And One Half Bus

Advantages

Easy to expand, very high reliability, very high flexible operation and removal of a circuit breaker without an outage

Disadvantages

Complex relaying and control, high cost and a large area of land is required

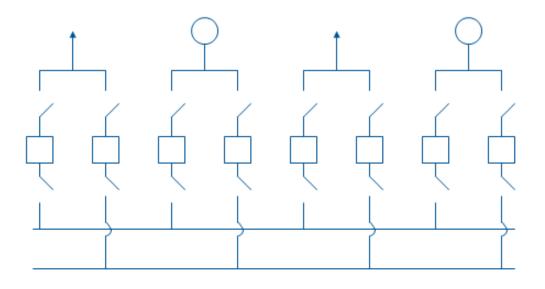

SINGLE BREAKER DOUBLE BUS

Advantages

Easy to expand, increased reliability and flexibility over radial bus

Disadvantages

Increased cost and complexity of protective relaying over radial bus


DOUBLE BREAKER DOUBLE BUS

Advantages

Easy to expand, very high reliability, very high flexible operation and removal of a circuit breaker without an outage

Disadvantages

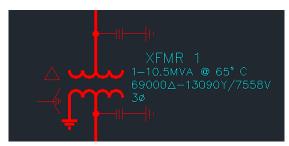
Complex relaying and control, high cost and a large area of land is required

SUBSTATION EQUIPMENT

- Power transformers
- Tap changing equipment
- Steel structures
- Lightning arresters
- Circuit switchers
- SF₆ circuit breakers
- Oil circuit breakers
- Air circuit breakers
- Vacuum circuit breakers
- Disconnect switches
- Coupling capacitors
- Potential transformers
- Current transformers
- High-voltage fuses
- Metal-clad switchgear

- Shunt reactors
- Meters
- Relays
- Supervisory control
- Remote terminal units
- Digital fault recorders
- Capacitors
- Voltage regulators
- Control house
- Conduits
- Control wires
- Control panels
- Power-line carrier equipment
- Microwave equipment
- Batteries

TRANSFORMER

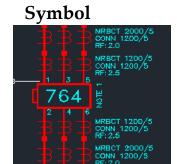

Purpose

- Change voltage from one level to another
- Regulate voltage level.

Types

- *Generator Step-Up (GSU) transformers*
- Step-down (to load) distribution transformers

Symbol


CIRCUIT BREAKER

Purpose

Detect faults and interrupt current flow

Types

Oil, air, SF₆ gas, vacuum

DISCONNECT SWITCHES

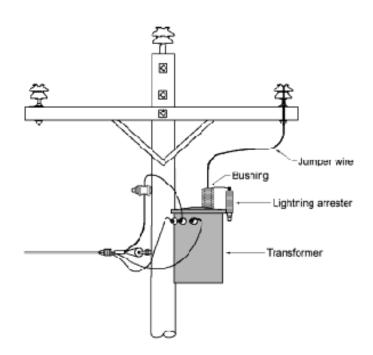
Purpose

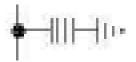
Equipment usually connected in series with disconnect switches to isolate lines and equipment for maintenance

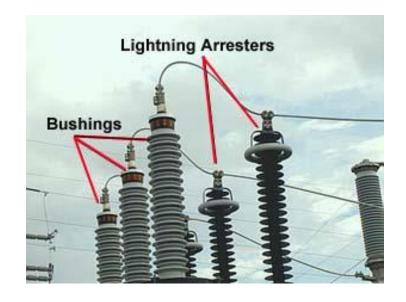
Types

Vertical break, Center break, Side break, Double end break, Pantograph, Motor-operated

Symbols




LIGHTNING ARRESTERS


Purpose

- Protect substation equipment and electric system from lightning strokes
- *Installed near power transformers*

Symbol

CIRCUIT SWITCHER

Purpose

- For switching and protection of transformers, lines, cables and capacitor banks
- Some models have bypass switches

M * N.O.

Symbol

Types

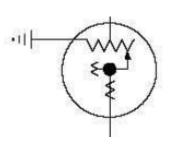
Vertical interrupter circuit switcher

Horizontal interrupter circuit switcher

CURRENT TRANSFORMERS

Purpose

- Connected in lines to measure alternating electric current
- Electrical inputs for operation of protective relays and measuring instruments



VOLTAGE REGULATORS

Purpose

Provides voltage boost or buck in a system to provide a more or less voltage constant voltage as the amount of the load.

CONTROL HOUSE/PANEL ARRANGEMENT

Purpose

To protect the control equipment including panels, batteries, battery chargers, relays, meters, etc.

ELECTRICAL & CONTROL DELIVERABLES

Drawings

- Control Building Arrangement
- Panel Layouts
- Key Protection Diagram
- Three-line diagrams (AC Schematics)
- DC Schematics
- Wiring Diagrams

Documentation

- Project Design Document (Needs to be worked on throughout the project)
- Project schedule (Gantt Chart)
- Project budget
- Materials List

CONTACT INFORMATION

Cole Beaulieu

Email: BeaulieuCA@bv.com

Phone: (952) 896 - 0870

Adam Literski

Email: <u>LiterskiAM@bv.com</u>

Phone: (913) 458 - 4367

